Perturbation Results Related to Palindromic Eigenvalue Problems
نویسنده
چکیده
We investigate the perturbation of the palindromic eigenvalue problem for the matrix quadratic P(λ)= λ2 A?1 + λA0 + A1 with A0, A1 ∈ C n×n and A?0 = A0 (where ?= T or H ). The perturbation of eigenvalues in the context of general matrix polynomials, palindromic pencils, (semi-Schur) anti-triangular canonical forms and differentiation is discussed. 2000 Mathematics subject classification: primary 15A18, 15A22, 65F15.
منابع مشابه
Perturbation of Palindromic Eigenvalue Problems
We investigate the perturbation of the palindromic eigenvalue problem for the matrix quadratic P (λ) ≡ λA1 + λA0 + A1, with A0, A1 ∈ Cn×n and A0 = A0. The perturbation of palindromic eigenvalues and eigenvectors, in terms of general matrix polynomials, palindromic linearizations, (semi-Schur) anti-triangular canonical forms, differentiation and Sun’s implicit function approach, are discussed.
متن کاملStructured Eigenvalue Backward Errors of Matrix Pencils and Polynomials with Palindromic Structures
We derive formulas for the backward error of an approximate eigenvalue of a ∗palindromic matrix polynomial with respect to ∗-palindromic perturbations. Such formulas are also obtained for complex T -palindromic pencils and quadratic polynomials. When the T -palindromic polynomial is real, then we derive the backward error of a real number considered as an approximate eigenvalue of the matrix po...
متن کاملPalindromic Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations
Palindromic polynomial eigenvalue problems and related classes of structured eigenvalue problems are considered. These structures generalize the concepts of symplectic and Hamiltonian matrices to matrix polynomials. We discuss several applications where these matrix polynomials arise, and show how linearizations can be derived that reflect the structure of all these structured matrix polynomial...
متن کاملPalindromic quadratization and structure-preserving algorithm for palindromic matrix polynomials of even degree
In this paper, we propose a palindromic quadratization approach, transforming a palindromic matrix polynomial of even degree to a palindromic quadratic pencil. Based on the (S + S−1)-transform and Patel’s algorithm, the structurepreserving algorithm can then be applied to solve the corresponding palindromic quadratic eigenvalue problem. Numerical experiments show that the relative residuals for...
متن کاملStructured doubling algorithms for solving g-palindromic quadratic eigenvalue problems∗
The T-palindromic quadratic eigenvalue problem (λB + λC + A)x = 0, with A,B,C ∈ Cn×n, C = C and B = A, governs the vibration behavior of trains. One way to solve the problem is to apply a structure-preserving doubling algorithm (SDA) to the nonlinear matrix equation (NME) X + BX−1A = C and “square-root” the matrix quadratic involved. In this paper, we generalize the SDA for the solution of (odd...
متن کامل